Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycoscience ; 63(3): 118-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37089628

RESUMO

Typhula ishikariensis and the related fungi were separated into three biological species by morphological and physiological characteristics, as well as DNA sequences and mating reactions. We propose that the T. ishikariensis complex should be divided into three species (T. ishikariensis, T. canadensis and T. hyperborea) and two varieties (T. ishikariensis var. ishikariensis and var. idahoensis). Typhula hyperborea was reappraised to be recognized also as a separate species of the T. ishikariensis complex.

2.
Food Addit Contam Part B Surveill ; 11(1): 64-74, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29258380

RESUMO

The natural occurrence of fungi, mycotoxins and fungal metabolites was investigated in 100 samples of maize grains collected from south and southwestern Ethiopia in 2015. The maize samples were contaminated by Fusarium, Aspergillus and Penicillium species. Using liquid chromatography tandem mass spectrometry 127 secondary metabolites were analysed. Zearalenone was the most prevalent mycotoxin, occurring in about 96% of the samples. Zearalenone sulfate was the second most prevalent, present in 81% of the samples. Fumonisin B1 was detected in 70% of the samples with a mean level of 606 µg kg-1 in positive samples, while FB2, FB3 and FB4 were detected in 62%, 51% and 60% of the maize samples with mean levels of 202, 136 and 85 µg kg-1, respectively. Up to 8% of the samples were contaminated with aflatoxins, with a maximum level of aflatoxin B1 of 513 µg kg-1. Results were higher than earlier reports for maize from Ethiopia.


Assuntos
Fungos/isolamento & purificação , Micotoxinas/isolamento & purificação , Zea mays/química , Zea mays/microbiologia , Etiópia
3.
Sci Rep ; 6: 28702, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346054

RESUMO

Lack of resistance to pink snow mould (Microdochium nivale) is a major constraint for adaptation of perennial ryegrass (Lolium perenne L.) to continental regions with long-lasting snow cover at higher latitudes. Almost all investigations of genetic variation in resistance have been performed using cold acclimated plants. However, there may be variation in resistance mechanisms that are functioning independently of cold acclimation. In this study our aim was to identify candidate genes involved in such resistance mechanisms. We first characterized variation in resistance to M. nivale among non-acclimated genotypes from the Norwegian cultivar 'Fagerlin' based on relative regrowth and fungal quantification by real-time qPCR. One resistant and one susceptible genotype were selected for transcriptome analysis using paired-end sequencing by Illumina Hiseq 2000. Transcriptome profiles, GO enrichment and KEGG pathway analysis indicate that defense response related genes are differentially expressed between the resistant and the susceptible genotype. A significant up-regulation of defense related genes, as well as genes involved in cell wall cellulose metabolic processes and aryl-alcohol dehydrogenase (NADP+) activity, was observed in the resistant genotype. The candidate genes identified in this study might be potential molecular marker resources for breeding perennial ryegrass cultivars with improved resistance to pink snow mould.


Assuntos
Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/fisiologia , Lolium/microbiologia , Doenças das Plantas/microbiologia , Transcriptoma/fisiologia , Xylariales/metabolismo , Xylariales/genética
4.
Plant Dis ; 100(1): 72-78, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30688584

RESUMO

The temporal distribution and magnitude of ontogenic resistance in strawberry leaves to Podosphaera aphanis has recently been quantified. However, the degree to which the pathogen is inhibited at sequential stages of conidial germination, hyphal growth, haustoria formation, latent period, colony expansion, and sporulation on the adaxial and abaxial leaf surfaces of various strawberry cultivars remains unclear. Five developmental stages of strawberry leaves ranging from newly emerged and folded leaves to fully expanded and dark-green leaves were inoculated with conidia of P. aphanis. The percentage of germinated conidia significantly declined between leaf stages 3 and 5. Postgermination growth of the pathogen was sequentially reduced in all measured responses, and the latent period was increased. Haustoria were not observed in mature leaves. The failure of the pathogen to penetrate mature leaves was a consistent feature associated with the expression of ontogenic resistance in older, fully expanded leaves.

5.
Plant Sci ; 225: 34-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25017157

RESUMO

The increase in surface temperature of the Earth indicates a lower risk of exposure for temperate grassland and crop to extremely low temperatures. However, the risk of low winter survival rate, especially in higher latitudes may not be smaller, due to complex interactions among different environmental factors. For example, the frequency, degree and length of extreme winter warming events, leading to snowmelt during winter increased, affecting the risks of anoxia, ice encasement and freezing of plants not covered with snow. Future climate projections suggest that cold acclimation will occur later in autumn, under shorter photoperiod and lower light intensity, which may affect the energy partitioning between the elongation growth, accumulation of organic reserves and cold acclimation. Rising CO2 levels may also disturb the cold acclimation process. Predicting problems with winter pathogens is also very complex, because climate change may greatly influence the pathogen population and because the plant resistance to these pathogens is increased by cold acclimation. All these factors, often with contradictory effects on winter survival, make plant overwintering viability under future climates an open question. Close cooperation between climatologists, ecologists, plant physiologists, geneticists and plant breeders is strongly required to predict and prevent possible problems.


Assuntos
Adaptação Fisiológica , Mudança Climática , Clima , Fenômenos Fisiológicos Vegetais , Plantas , Estações do Ano , Temperatura , Doenças das Plantas , Neve , Estresse Fisiológico
6.
Phytopathology ; 104(9): 954-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24624951

RESUMO

Ontogenic or age-related resistance has been noted in many pathosystems but is less often quantified or expressed in a manner that allows the concept to be applied in disease management programs. Preliminary studies indicated that leaves and fruit of three strawberry cultivars rapidly acquired ontogenic resistance to the powdery mildew pathogen, Podosphaera aphanis. In the present study, we quantify the development of ontogenic resistance in controlled inoculations of 10 strawberry cultivars using diverse isolates of P. aphanis in New York and Florida, USA, and in Norway. We report the differential and organ-specific development of ontogenic resistance in the receptacle and externally borne strawberry achenes. We further report that rapid development of ontogenic resistance prior to unfolding of emergent leaves, rather than differential susceptibility of adaxial versus abaxial leaf surfaces, may explain the commonly observed predominance of powdery mildew on the lower leaf surfaces. Susceptibility of leaves and fruit declined exponentially with age. Receptacle tissue of berries inoculated at four phenological stages from bloom to ripe fruit became nearly immune to infection approximately 10 to 15 days after bloom, as fruit transitioned from the early green to the late green or early white stage of berry development, although the achenes remained susceptible for a longer period. Leaves also acquired ontogenic resistance early in their development, and they were highly resistant shortly after unfolding and before the upper surface was fully exposed. No significant difference was found in the susceptibility of the adaxial versus abaxial surfaces. The rapid acquisition of ontogenic resistance by leaves and fruit revealed a narrow window of susceptibility to which management programs might be advantageously adapted.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença , Fragaria/crescimento & desenvolvimento , Fragaria/imunologia , Doenças das Plantas/imunologia , Flores/crescimento & desenvolvimento , Flores/imunologia , Flores/microbiologia , Fragaria/anatomia & histologia , Fragaria/microbiologia , Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Frutas/imunologia , Frutas/microbiologia , Interações Hospedeiro-Patógeno , Noruega , Doenças das Plantas/microbiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Fatores de Tempo
7.
Phytopathology ; 103(7): 717-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23384856

RESUMO

The formation of chasmothecia by the strawberry powdery mildew pathogen (Podosphaera aphanis) is widespread but often sporadic throughout the range of strawberry cultivation. In some production regions, notably in warmer climates, chasmothecia are reportedly rare. We confirmed that the pathogen is heterothallic, and that initiation of chasmothecia is not only dependent upon the presence of isolates of both mating types but also largely suppressed at temperatures >13°C. Compared with incubation at a constant temperature of 25°C, progressively more chasmothecia were initiated when temperatures were decreased to 13°C for progressively longer times. At lower temperatures, production of chasmothecia was associated with a decline in but not total cessation of conidial formation, and pairings of compatible isolates sporulated abundantly at 25°C. We developed mating-type markers specific to P. aphanis and used these to confirm the presence of both mating types in populations that had not yet initiated chasmothecia. The geographic discontinuity of chasmothecia production and the sporadic and seemingly unpredictable appearance of chasmothecia in P. aphanis are possibly due to the combined influence of heterothallism and suppression of chasmothecia formation by high temperatures.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Temperatura , Ascomicetos/fisiologia , Ascomicetos/ultraestrutura , Genes Fúngicos Tipo Acasalamento/genética , Marcadores Genéticos , Genótipo , Reação em Cadeia da Polimerase Multiplex , Fenótipo , Folhas de Planta/microbiologia , Esporos Fúngicos
8.
Fungal Biol ; 116(7): 756-68, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22749162

RESUMO

Pythium polare sp. nov. is a new heterothallic oomycete species isolated from fresh water and moss from various locations in both the Arctic and Antarctic. This water mould is able to infect stems and leaves of Sanionia moss (Sanionia uncinata). Pythium polare causes brown discolouration in in vitro inoculation tests at 5 °C after 5 weeks of inoculation. It is characterized by globose sporangia with various lengths of discharge tubes releasing zoospores and aplerotic oospores with usually one to five antheridia. The sexual structures are only produced in a dual culture of antheridial and oogonial isolates. Phylogenetic analysis, based on ITS sequencing, places all isolated strains of P. polare in a unique new clade, hence it is considered a novel species. Pythium canariense and Pythium violae are the most closely related species of P. polare based both on morphology and the phylogenetic analysis.


Assuntos
Bryopsida/microbiologia , Doenças das Plantas/microbiologia , Pythium/classificação , Pythium/isolamento & purificação , Regiões Antárticas , Regiões Árticas , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Filogenia , Pythium/citologia , Pythium/genética , Análise de Sequência de DNA , Esporos Fúngicos/citologia , Microbiologia da Água
9.
Phytopathology ; 100(3): 246-51, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20128698

RESUMO

A collection of four clonal isolates of Podosphaera aphanis was heterothallic and was composed of two mutually exclusive mating types. Cleistothecial initials approximately 20 to 30 microm in diameter were observed within 7 to 14 days after pairing of compatible isolates and developed into morphologically mature ascocarps within 4 weeks after initiation on both potted plants maintained in isolation and in field plantings in New York State and southern Norway. Ascospores progressed through a lengthy maturation process over winter, during which (i) the conspicuous epiplasm of the ascus was absorbed; (ii) the osmotic potential of the ascospore cytoplasm increased, resulting in bursting of prematurely freed spores in water; and, finally, (iii) resulting in the development of physiologically mature, germinable, and infectious ascospores. Release of overwintered ascospores from field collections was coincident with renewed plant growth in spring. Overwintered cleistothecia readily dehisced when wetted and released ascospores onto glass slides, detached strawberry leaves, and leaves of potted plants. Plant material exposed to discharged ascospores developed macroscopically visible mildew colonies within 7 to 10 days while noninoculated controls remained mildew free. Scanning electron and light microscopy revealed that cleistothecia of P. aphanis were enmeshed within a dense mat of hyphae on the persistent leaves of field-grown strawberry plants and were highly resistant to removal by rain while these leaves remained alive. In contrast, morphologically mature cleistothecia on leaves of nine deciduous perennial plant species were readily detached by simulated rain and seemed adapted for passive dispersal by rain to other substrates. Contrary to many previous reports, cleistothecia appear to be a functional source of primary inoculum for strawberry powdery mildew. Furthermore, they differ substantially from cleistothecia of powdery mildews of many deciduous perennial plants in their propensity to remain attached to the persistent leaves of their host during the intercrop period.


Assuntos
Ascomicetos/citologia , Ascomicetos/fisiologia , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...